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Abstract. The zero-temperature physical properties of an Ising chain in a Markovian field 
taking only two values with non-zero mean are evaluated and a related discrete stochastic 
mapping with the theory of finite Markov chains is investigated. A discontinuous behaviour 
of the magnetisation and the residual entropy, dependent on both mean field and exchange, 
is found which can be related to flips of microscopic spin clusters. For non-zero temperature 
the mapping is characterised by the fractal properties of its attractor and by the Lyapunov 
exponent. An explicit expression for the measure in the nth iteration of the Chapman- 
Kolmogorov equation is obtained. 

1. Introduction 

The calculation of the partition function of the one-dimensional Ising model in an 
external static random magnetic field h, can be reduced to the problem of one spin 
in an auxiliary local random field [ l ,  21 

The local random field tn is governed by the discrete stochastic mapping 

5 n  = h n + 4 5 n - I )  = A h , ,  5 n - 1 )  & = O ; n = l ,  . . . ,  N (1.2) 

A(x) = (2p)-’  ln[cosh p(x+J) /cosh  P ( x - J ) ]  (1.3) 
B(x) = (2p)-’  ln[4 cosh p ( x + J )  cosh P(x-J ) ] .  (1.4) 

where 

If the external field h, is a first-order Markov chain the auxiliary field tn is a 
second-order Markov chain. The joint probability density P,,(x, 7) for (&, h,) is 
governed by the Chapman-Kolmogorov equation [3,4] 

P n ( X ,  77) = I d77‘ 1 dx‘ w ? I 7 7 ’ ) P f l - l ( X ’ ,  77’)8(X-f(77, x’)) (1.5) 

where T ( 7 7 ) ~ ’ )  is the transition probability for the external field. 
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2152 U Behn and V A  Zagrebnov 

The fixed point of (1.5) gives the invariant measure of the local random field 
p*(x)  = f d v  p * ( x ,  7) which can be used to calculate physical quantities like the free 
energy, the magnetisation, or the Edwards- Anderson parameter [2]. 

Obviously, the properties of the stochastic mapping depend on the nature of the 
driving process h, and on the shape of the function A. 

For non-zero temperatures A ( x )  is infinitely many times differentiable. As a 
consequence (1.2) generates for a discrete driving process an uncountable number of 
states. The support of the corresponding invariant measure constitutes for small 
exchange J a fractal whereas for large J it is continuous [2-71. Within the fractal 
range of this support a physical quantity, the local magnetisation, exhibits another 
transition from fractal to continuous behaviour. The corresponding transition line was 
interpreted to indicate the onset of frustration [5]. 

For a continuous driving process (without gaps) the support is always the continuum 

For zero temperature A ( x )  is piecewise linear with parts where a,A(x) = 0. As a 
consequence (1.2) generates for a given J only a finite number of possible states so 
that the theory of finite Markov chains [9] can be applied to determine the invariant 
measure [3,4]. The drastic changes in the quality of the support are naturally reflected 
by the behaviour of its fractal dimension dr which undergoes, as a function of the 
physical parameters, continuous as well as discontinuous transitions from one to zero 
[3,4,10] so that dr behaves similar to order parameters in phase transitions [3,4,11]. 
Due to the non-linearity of A the support is a multifractal which is topologically 
equivalent to the Cantor set but is not in a simple way self-similar. Its fractal dimension 
can be calculated numerically [lo] exploiting methods proposed in [12]. For high 
temperatures, however, the support can be well approximated by a strictly self-similar 
Cantor set [3,4]. 

Very recently the full scaling properties of the measure have been investigated [ 131 
evaluating a generalised fractal dimension and the spectrum of singularities [ 141. 

In this paper we consider a two-valued first-order Markov chain taking the values 
h, = h,+ ah, a = +, characterised by the probability a that a changes from lattice site 
to lattice site, 

[2, 7981. 

T (  7 17 r ,  = as  (7 + r/’ - 2h,) + (1 - a ) 6 (  7 - 7f). (1.6) 

This choice describes for a = 0 a constant external field, for a = 1 an alternating field 
with period one, and for a =+ the case of uncorrelated (independent identically 
distributed) variables. For 0 < a < 1 there exist physical properties which are insensitive 
to the special value of a whereas others depend on it. 

The paper is organised as follows. In § 2 the physical properties at zero temperature 
are investigated. We determine the possible states of the finite Markov chain and the 
invariant measure ( 5  2.1) which is used to evaluate the magnetisation ( m )  and the 
residual entropy s,,, ( 9  2.2). We obtain a discontinuous behaviour of these quantities 
(cf also [ 151) dependent on both external field and exchange. For 0 < a < 1 the location 
of the discontinuities is independent of a whereas the values of ( m )  and s,,, depend 
on a between the discontinuities. This observation can be explained alternatively by 
simple energy-balance arguments which relate the discontinuities to flips of microscopic 
spin clusters (0 2.3). 

Section 3 deals with non-zero temperature characteristics of the stochastic mapping. 
We obtain analytically that the gap which generates the fractal structure of the support 
vanishes in a linear way if the exchange reaches a critical value in contrast to a recently 
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proposed $-power law [16] ( D  3.1). The (always negative) Lyapunov exponent is shown 
to diverge in the zero-temperature limit. For non-zero temperature we compare results 
obtained in the Cantor approximation with those of a numerical simulation (§  3.2). 
Furthermore, we give a closed analytic expression for the fractal measure in the nth 
step of the iteration procedure (0 3.3). In § 4 the application to related models is 
shortly discussed. 

2. Zero-temperature properties 

2.1. Support and invariant measure 

For zero temperature A ( x )  is piecewise linear 

for x S * J  
for 1x1 < J. 

A ( x )  = 

As a consequence, for a driving process h, taking only the values h, the mapping (1.2) 
may generate for the driven process 5, only the following states: 

x ( n + ,  n-,O)= n+h++n-h- (2.2) 

x (  n,, n - ,  i J )  = n+h+ + n-h- * J  (2.3) 

where n, = 0, 1, . . . . All states with x > J and x < -J map after the next iteration into 
x = h, + J and x = h, - J, respectively, so that for given physical parameters ( h,, h, J )  
only a finite number of states (2.2) and (2.3) are generated with n, chosen such that 

x ~ [ h + - J ,  h ,+J]u[h- -J ,  h - + J ] .  (2.4) 

Thus, if the magnetic field takes the value h,,  one of these states, x , ,  is generated. 
Those pairs form the states z, = ( x , ,  h , )  of a finite Markov chain. According to the 
usual classification [9] the states (2.2) are inessential for O <  cy < 1 because there is a 
net outflow into the set of essential states (2.3). Thus, for n + cc the probability density 
of the inessential states tends to zero and they should not be taken into account to 
calculate the invariant measure. 

For fixed h the essential states (2.3) (which are independent of the special value 
of a )  build in the ( x ,  ho,  J )  space a complicated structure which may be visualised as 
similar to a honeycomb. In figures 3(a)  and 4 ( a )  two cross sections in this space are 
shown for J = constant and h, = constant, respectively. Increasing the variable para- 
meters h, and J,  the number of states changes in a discontinuous way at some critical 
values of these parameters which leads to a discontinuous behaviour of physical 
quantities. 

The probability density is the sum of weighted S functions located at the points 
{ x , ,  h , }  which constitute the space of states 

p n ( x ,  h )  =c w y ) s ( X - x X , ) S ( h - h i ) .  
i 

(2.5) 

Introducing the vector of weights w ( " )  = { w i n ' }  the Chapman-Kolmogorov equation 
(1.5) converts, by inserting (2.5), into the matrix equation [3,4] 

(2.6) ,,,(n) - - D,,,(n-l) 
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where the matrix elements of D are a if x, =f(h, ,  x, =f(h-,, a ) ) ,  and are y = 1 - -cy  if 
x, =f(h,, x, =f(h, ,  e ) ) ,  and zero otherwise. 

The invariant measure corresponds to the fixed points of (2.6) given by 

(1 - D)w* = 0. (2.7) 
The number of fixed-point solutions is equal to the number of disconnected sets of 
essential states. For 0 < a < 1 all essential states are connected and (2.7) has only one 
fixed point, i.e. the system is ergodic. 

To calculate the invariant measure is an exercise in linear algebra. For example, 
in the range -h - /2<  J <  h+/2 we have for O <  a < 1 six essential states z, = (xi, h , )  
which map applying (1.2) into themselves as shown in the flow diagram in figure 1 .  
z = {z,} and the transition matrix D are 

Z =  5"" 
h- + J, h- 

2h- + J, h- 
h- - J, h- 

Obviously, the fixed point of (2.6) depends on a,  w* = 4( y, c y 2 ,  ya, a,  ya ,  y2)'. 

calculated. 
With invariant measures of this type (figure 2) physical quantities are easily 

Figure 1. Flow diagram for the six essential states in the region - h _ / 2 < J <  h + / 2 .  Full 
and open arrows denote the action of the mapping (1.2) with h,, = h, and h,, = h - ,  
respectively. 

2.2. Residual entropy and magnetisation 

The invariant measure allows us to calculate physical quantities such as free energy 
and magnetisation [2]. For zero temperature the corresponding expressions simplify to 

f = - dxp*(x)B(x)  = -E ~ : B ( x , )  (2.9) I I 

( m )  = J dx J dyp*(x)p*(y) tanh P ( ~ + A ( Y ) )  

=c w:wF sgn(x,+A(x,)). 
4 J  

(2.10) 
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Figure 2. Invariant measure for the 32 essential states for J = 3 h + / 4 ,  h, = h / 4  (uncorrelated 
case). In the whole interval ( 2 h + +  h k ) / 2 < J < h  the weights remain the same, only the 
location of the states shifts. 

The latter formula is restricted to the uncorrelated case. For zero temperature the 
function B becomes piecewise linear 

for x S i J  
for 1x1 < J. 

B ( x )  = (2.11) 

A further quantity of interest, the residual entropy s,,,, can be directly related to the 
invariant measure. We start with 

N N 

[2 cosh p( .$+vJ)]”* (2.124 
U = +  

which results from (1.1) summing up over the degrees of freedom of the Nth spin. 
To obtain sres we have to look for terms which give rise to a linear temperature 
dependence o f f ”  = - ( p N ) - ’  In ZN. Obviously, the only states which produce this 
behaviour are x,  = * J  so that 

(2.13) 

With s N  = -afN/aT we obtain in the thermodynamic limit at zero temperature 

s,,,= lim ~ “ = 2 - ’ k ~ ( w ~ , = J + w ~ , = - ~ ) l n 2  (2.14) 
P,N-C= 

where 

In the following we present explicit results for magnetisation and residual entropy for 
two cross sections of the above-mentioned honeycomb-like structure in the (x, h o ,  J )  
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space; namely for fixed exchange, J = h / 4 ,  and for fixed expectation value of the 
magnetic field, h o =  h / 4 ,  respectively (figures 3 and  4 ) .  Increasing the variable para- 
meters ho and J respectively, the number of states changes in a discontinuous way at 
some critical values hrk’ and JLk’, which leads to a discontinuous behaviour of physical 
quantities. 

For different values of J / h  or  h o / h  we would obtain different cross sections where, 
for example, these critical values are shifted. The qualitative picture, however, will 
not be changed even if we take irrational values. 

- h+J 

- h-J 
0 

X 

0 

Figure 3. Space of states ( a ) ,  magnetisation ( b ) ,  and 
residual entropy ( c )  as a function of ho for fixed h 
and J = h / 4  (uncorrelated case). Only the first six 
steps and the last one are shown. 

Figure 4. Space of states ( a ) ,  magnetisation ( b )  and 
residual entropy (c )  as function of J for fixed h and 
h, = h / 4  (uncorrelated case). Only the first four steps 
are shown. 
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As mentioned above, the essential states are independent of the special value of cy 

in the range 0 < a < 1, whereas the invariant measure living on these states depends 
on it (cf (2.8)).  Therefore, the location of the discontinuities does not depend on cy 

but, for example, the altitudes of the steps of (m)  would depend on cy. For simplicity 
we restrict ourselves, however, to the uncorrelated case. 

We first discuss the case of fixed exchange, J = h / 4  (cf figure 3 ) .  Increasing h, we 
find crossing 

hLk’= h -2J /k  k = 1 ,2 ,  . . . 
that the number of states increases by two and the magnetisation jumps by 

Am(k) = k(1/2)”’ with 
cc 

Am‘k’= l  

(2.15) 

(2.16) 
k = l  

At ho= hLk’ the magnetisation is just in the middle between the steps (not shown in 
figure 3( b ) ) .  Furthermore, one of the states crosses the broken lines x = * J  (cf figure 
3(a ) )  and accordingly the residual entropy has a non-zero value 

sres = (1/2)ki2kB In 2. (2.17) 

The saturation value (m) = 1 is reached for h, 3 h in a monotonous way after an infinite 
but countable number of jumps. A qualitative behaviour of this kind was already 
predicted in [ 151. 

Next we discuss the case of a fixed expectation value, h, = h / 4  (figure 4 ) .  Increasing 
J the magnetisation jumps at Jrk’ but is not monotonically increasing in contrast to 
the previous case. The values of Jbk’,  (m), and the residual entropy are given in table 
1. We have now a non-zero sres not only at the critical values JLk) but also for all 
J 3 J y )  since in this range we always have states x = iJ. Accordingly, the magnetisation 
at J = J r k ’  is for k > 4 ,  not in the middle between the steps. 

The discontinuous behaviour of (m) and s,,, shows that for T + 0 a perturbation 
theory should fail. 

To obtain results for different cross sections requires again the construction of the 
support and the calculation of the invariant measure along the lines given in § 2.1. 
Obviously, this could be done on a computer with the help of formula manipulation 
procedures. 

Table 1. Magnetisation and residual entropy as a function of J for h , =  h / 4 .  The critical 
values J:‘) are defined in the first row. 

0 
2-3 
2-* 
7 / 2 5  
3 / 2 4  
3312’ 
21/26  
2 7 9 3 / 2 ’ 3  
6 / 1 1  

0 

0 

0 
312’ 
0 

1/510 

2-2  

2-3 

2-5 



2158 U Behn and V A  Zagrebnov 

2.3. Energy-balance arguments 

We demonstrate now how a part of the above results can be alternatively obtained 
with simple energy-balance arguments and that the discontinuities can be related to 
flips of microscopic spin clusters. We consider a given realisation of the random 
magnetic field {h,} and restrict ourselves for simplicity to the uncorrelated case. 

2.3.1. Magnetisation against h , .  We suppose that the exchange J is weak enough that 
for ho = 0 a given spin s, will follow the random external field h, = * h even if its two 
neighbours have the opposite direction. Comparing the energies of the two configur- 
ations in figure 5 ( a )  we find the condition E,(  h, = 0) < E ; ( h o  = 0), i.e. J < h/2. Since 
with the same probability h, = * h  we have ( m )  = 1imN+=(l /N) Z:=, s, = 0. 

(bl 

E l = - 2 h + + h - + 2 J  E 2 = - 2 h + + 2 h _ + J  E ,  = 2 h -  - h + + 2 J  
E’ ,  = -2h+ - h- - 2J E ;  = -2h+ - 2 h - - 3 J  i I = 2 h - + h + - 2 J  

Figure 5. Spin configurations which are responsible for the first few jumps in magnetisation. 
The spins are subject to the field h,, = h,. The signs denote the value of 5 = * at the 
corresponding lattice sites. We compare the energies E of the initial configurations (full 
arrows) with the energies E ’  of configurations obtained by flipping the inner spins (open 
arrows). 

Switching on a homogeneous external field h, > 0 changes this situation because 
up spins are now favoured. The most sensitive configuration is shown in figure 5 ( a ) .  
The down spin flips up if E ;  < E , ,  i.e. for h,> = h -25. The next threshold 
h y )  = h - J  results from clusters of the type shown in figure 5(b) .  More generally, 
clusters of k down spins bounded by up spins become unstable at the thresholds hLk’ 
given by (2.15). The flips of all down-spin clusters of a given length k at the thresholds 
hLk’ lead to a jump of the magnetisation A m ( k )  given by (2.16) which is equal to 
(sr -si) x length of the cluster x probability of the cluster = 2k(1/2)kt2. The flipping 
of shorter down-spin clusters does not influence larger down-spin clusters so that the 
probabilities can be directly taken from {h,}. 

At the thresholds the energies of the competing subconfigurations are equal, i.e. 
the ground state is macroscopically degenerated which is reflected by the non-zero 
residual entropy (2.17). 

2.3.2. Magnetisation against J. Now we would like to apply this line of reasoning to 
calculate the magnetisation as a function of J for a given value of h,< h. 

We start with J = 0 so that each spin s, will follow the direction of the random 
external field h, = h,, and ( m )  = 0. 

Increasing J favours parallel neighboured spins in competition with the random 
field. The most sensitive subconfiguration is again the single down-spin cluster (figure 
5 (  a ) )  which becomes unstable for J > J:” = - h-/2. As in the previous case the first 
jump of magnetisation is 4. 
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Increasing J further gives, however, a surprise. Now the most sensitive subconfigur- 
ation is the single up-spin cluster shown in figure 5 ( c )  which becomes unstable for 
J > J y ’  = h+/2. At this threshold the magnetisation decreases. However, the probability 
of this cluster cannot be simply taken from the initial configuration, since flipping up 
single down spins decreases the number of single up spins (figure 6(a)) .  From the 
initial ground state only clusters of five spins shown in figure 6(b) survive, the 
probability of which is (l/2)’. Thus the jump of the magnetisation at Jk2’ is -2( l / q 5  = 
-1/16 in accordance with table 1. 

1 
0 0 0 0 0  

t v t  t 0 0 0 0 0  
ho 1 1  1 1 1  1 1  

to) ibl 

Figure 6. The number of single up-spin clusters (figure 5(c ) )  is reduced flipping up single 
down-spin clusters ( a ) .  Only subconfigurations ( b )  survive the reconstruction of the ground 
state in the region J:” < J < Jk2) .  

The third threshold J i 3 )  = - h -  originates from the energy-balance condition for 
two down-spin clusters (figure 5(b) ) .  To calculate the altitude of the third jump as 
well as the following thresholds and jumps would, however, need an increasing effort 
at least comparable with our more systematic finite Markov chain analysis. 

It is clear that also in the general case the discontinuities of magnetisation are due 
to flips of microscopic spin clusters. The explanation of the continuous degeneracy 
of the ground state in this language deserves further investigation. 

3. Non-zero temperature properties 

3.1. The fractal support 

It was previously shown [2-71 that for non-zero temperature the mapping (1.2) generates 
an uncountable number of essential states. The corresponding invariant measure may 
have a fractal structure. 

These states can be labelled in a kind of symbolic dynamics [17] by sequences of 
signs which characterise its history [3,4]. The result ofthe nth iteration of (1.2) starting 
from the initial value &, = y is denoted by 

&rt,;y = f ( h f l , f ( h f l - l ,  ‘ ’ , f ( h , ,  Y )  * f . I)  (3.1) 

where a, = {cfl, . . . , ul} denotes the sequence of signs corresponding to a given realisa- 
tion of the driving process hfl = {hU,$ ,  . . . , hu,}. The result of infinitely many iterations 
(not depending on the initial value since 8, f (  h, x)  < 1) is denoted by x, where U 
symbolises an infinite sequence of signs. The attractor of (1.2), i.e. the support of the 
invariant measure, is bounded by the fixed points of (1.2) x,, a = f, for constant fields 
h, = h, = constant, U = f, respectively. These fixed points are 

(3.2) x, = h,/2+ (2p)-’  sinh-’[eZPJ sinh(ph,)l. 
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The hierarchy of gaps can be obtained as mappings of these fixed points [3,4]. The 
first gap is A = x+,- - x-,+ = 4h + x- - x,. For h, = 0 we have x, = -x- = x*, and A = 
2(2h - x*) = 0 defines the physical parameters for which the gap disappears. The result 
for the exchange is well known [ 2 , 5 ] :  

J ,  = (2p)-' ln[sinh(3ph)/sinh(ph)]. (3.3) 
For a given J the ( l /p ,  h )  plane (figure 7 )  is separated into regions with different signs 
of the gap by 

h, = (2p)- '  cosh-'[(e2PJ - 1)/2]. (3.4) 
For pc we do  not find an explicit expression, only @,(!I, = 0) = ( 2 J ) - '  In 3 results from 
(3.4). 

3 I- 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
I 
I 
I 
I 

0 213 1 2 

h 

h 

Figure 7. For fixed J = 1 the ( l /p ,  h )  plane is separated into regions with fractal (A>O) 
and continuous ( A S  0) support by (3.4) (full curve). The broken curve corresponds to the 
onset of frustration. The dotted curve indicates the overlap of bands of the second and 
third generation. 

Since we have the explicit expressions (3.2) and (3.3) we are able to analyse exactly 
how the gap closes. Expanding x* near J ,  yields 

x*( J + J,) = 2 h + C( J - J,) 

A(J + J,) = -2c(J - J,) 

c = tanh(3ph) (3.5) 
(3.6) 

in contrast to the $power law which has been claimed to be observed numerically [ 161 
(obviously this is not changed if we multiply (1.2) with p to obtain the mapping 
considered in [16]). 

In [16] it was further claimed that the support is a self-similar Cantor set. The 
support is, however, a multifractal which is only topologically equivalent to the Cantor 
set. It can be easily shown that it is not self-similar due to the non-linearity of the 
mapping. Although the four bands in the second generation have the same width (this 
is due to the symmetry of the mapping f ( h ,  -x) = - f ( -h ,  x)) the eight bands in the 
third generation have a different width. More precisely, there are two groups of four 
bands with the same width (figure 8). Only if A(x)-x, i.e. for a linear mapping do 
we find a self-similarity on any length scale as it is typical for the Cantor set. 
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X 

0 0.5 1.0 1.5 
J J 

Figure 8. Boundaries of the support and gaps of the second and third generation (black 
regions) for x > 0 as function of J for ( a )  p = 1 and ( b )  p = 10, for h, = 0, h = 1. For low 
temperatures the essential states of the zero-temperature case are approached. 

In [3,4] the Cantor approximation was introduced replacing A f x )  by x ( x *  - h ) / x * ,  
i.e. the support was approximated by a strictly self-similar Cantor set, the first gap of 
which has the exact value. The fractal dimension is 

Near the critical exchange we find with (3.5) that 

(3.8) 

The Cantor approximation works well for high temperatures and is an analytic 
approximation which ensures the correct behaviour of the first gap. 

If d f =  1 the support is continuous but the measure constitutes a fat fractal which 
may be characterised by different characteristic quantities [ 181. 

A physical quantity, the local magnetisation, given by m = (s,) = tanh p ( x  + A ( x ’ ) )  
where both x and x’ are governed by the invariant measure p* [2], also exhibits a 
transition from fractal to continuous behaviour [ 51. Continuous values become possible 
if m = 0 is not excluded, i.e. for x- ,+ + A ( x + )  0 which yields eZp’ > 2 cosh(ph). This 
transition line (figure 7 )  was interpreted to indicate the onset of frustration [5] since 
for m = (s,) = 0 no direction of s, is preferred which means a ‘remis’ in the competition 
between exchange and local random field. It terminates for T = 0 at h /  J = 2 where 
the residual entropy first becomes non-zero. 

The overlap of bands of different generations defines further lines in the ( l / p ,  h )  
plane which terminate for zero temperature at h = 2J /  k, k = 3,4, . . . . These are just 
the values for which the number of essential states jumps by two and the residual 
entropy exhibits spikes. For instance, bands of second and third generation overlap 
if x++,- = x- ,+ which gives the zero temperature h = 2J /3  (figure 7). 

dcantor ( J + J c ) = 1 - ( c / 2 h I n 2 ) ( J c - J ) .  

3.2. The Lyapunov exponent 

For non-zero temperature we have f’< 1 so that it is clear from the very beginning 
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that the mapping is non-chaotic and that the Lyapunov exponent is negative, 

A = dxp*(x)  lnf’(x)<O. I (3.9) 

For zero temperature we have f’= 1 for Ixi<J and zero otherwise. The support, 
however, is the interval [ -h  - J ,  h + J ]  so that the integration yields 

(3.10) 

The Lyapunov exponent is a measure of the convergence of two trajectories correspond- 
ing to the same realisation of the driving process starting with different initial values 
y and y’. A < O  corresponds to 

A ( j 3  + 00) = -00. 

(3.11) 

Roughly speaking, the convergence is faster the ‘fewer’ states are at our disposal. For 
j3 + 00 the space of states collapses to a finite number of states and A = -00. 

In the Cantor approximation we have f’= (x* - h)/x* = constant, and with 

(3.12) 

For d,.< 1 we can write Acan to r  = -In 2/dFantor which makes it clear that the convergence 
is faster the sparser is the support. If the first gap closes df+ 1. Inserting (3.8) we find 

A Cantor ( J + J , ) =  -1n2+(c/2h)(J-Jc).  (3.13) 

In figure 9 results of a numerical simulation are compared with those of the Cantor 

dxp*(x) = 1 we find the Lyapunov exponent 
A Cantor - - h[ (x*  - h)/x*]. 

approximation. 

3.3. The measure 

In [ 2 ]  the shape of the measure was illustrated by a numerical iteration of the 
Chapman-Kolmogorov equation. Similar pictures are generated by Monte Carlo 

0 

- I t  1 -jz p= 0.1 

-+ 
h 

Figure 9. Lyapunov exponent ( h ,  = 0, J = 1)  as a function of h for different temperatures 
obtained by numerical simulation (full circles) and in the Cantor approximation (full lines). 
For high temperatures the results practically coincide. 
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simulations [7]. In [4] it was shown that starting from a non-trivial initial measure 
the iteration of (1.5) converges to a unique fixed point p * .  Here we give a systematic 
prescription of how to obtain an analytic expression in the nth step of the iteration 
procedure. For simplicity we restrict ourselves to the uncorrelated case, the generalisa- 
tion to a # 4 is straightforward. 

We start with a normalised initial measure po(x) which is non-zero only in the 
interval I = [x-, x,] which contains the support. To evaluate the first iteration of (1.5) 
with T(717') given by (1.6) 

(3.14) 

we exploit that xUky = f (  h,, y )  has the monotonic inversion 

yU; ,  =f- ' (h , ,  x )  = - (2P)- '  ln[sinhP(J-x+h,)/sinh P(J+x-h , ) ]  (3.15) 

so that S(x-f(h, x')) = Id,f(h, ~ ' ) ~ - ~ ~ S ( x ' - - f - ~ ( h ,  x)) .  The prefactor of the 6 function 
is 

(3.16) W(x') = 12 cosh p ( x ' + J )  cosh P(x'-J)/sinh(2PJ)I.  

Thus we obtain from (3.14) that 

(3.17) 

where W(yU,,) =(s inh(2pJ) / [2s inhP(J-x+hu)  sinhp(J+x-h,)]l .  In this way 
po(x) generates two bands pu living on the mappings of the initial support xu,! = 

In the nth step we have 2" bands which can be labelled by the sequence of n signs 
U" characterising its history. A band pwr,_,(x) living on xu,,-l.l generates in the next 
iteration the two bands 

(3.18) 

[xu,- 9 xu,,]. 

Pun ( x)  = PU,,- (Y,,,;, ) W(Y,,,;, )/ 2 x E xu,r; I * 

Denoting the result of n inversions (cf (3.1)) by 

Y u , , , x  =f-'(h, , f - ' ( h 2 ,  ' . , f - ' (hn,  x)  . . .)I (3.19) 

we obtain from (3.17) and (3.18) the closed expression 

(3.20) 

The measure in the nth generation consists of 2" bands labelled by the 2" possible 
sequences of n signs *. The explicit expression (3.20) may be helpful to characterise 
the fractal measure calculating generalised scaling exponents [ 14, 181. 

We observed that for 0 < J < -h-/2 already the second iteration reproduces the 
zero-temperature limit 

p (x)  = a[ S( x - h, + J )  + S(x - h- + J )  + S(x - h, - J )  + S(x - h- - J ) ]  

which corresponds to the fact that in this range, for a = f, D" = D2 (cf (2.6)). 
Whereas for zero temperature the number of states jumps, crossing some critical 

parameters (which causes a discontinuous behaviour of physical quantities), for non- 
zero temperature we have at a given step of the iteration procedure always the same 
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number of bands given by the same analytic expression. Therefore we expect that for 
the latter case the discontinuous behaviour will be smoothed and no  phase transition 
will occur in accordance with the general arguments for I D  systems. 

In [16] it was claimed that even if the gap is closed ‘quasibands’ can be seen, the 
number of which increases by one at critical values of the exchange. We stress, however, 
that for a fractal structure statements of this kind make no  sense without a reference 
to a relevant length scale (e.g., in figure 3 ( a )  of [16] one sees four bands or  eight 
bands or even more depending on the reference length). 

4. Concluding remarks 

It is obvious that related models such as the random-exchange Ising chain ( J ,  = i J )  
can be treated by adapting this formalism. For non-zero temperature the corresponding 
mapping, tn = h + A ( [ , - , )  sgn J,, generates a fractal structure the gap of which disap- 
pears at x* = 2h as for the random-field Ising chain [ 2 ] .  For zero temperature this 
mapping generates again only a finite number of essential states x( m, * J )  = mh i J,  
m = 0, *l, 1 2 ,  . . . , chosen such that x E [ h  - J,  h + J ] .  We applied the theory of finite 
Markov chains to determine the invariant measure and recovered in this way easily 
the results for magnetisation obtained in [15] with a different method (cf figure 2 ( b )  
in [15] for the uncorrelated case). 

A further possible application of this formalism would be the Ising chain in a 
quasiperiodic two-valued magnetic field where for zero temperature a discontinuous 
behaviour of magnetisation and  a non-trivial residual entropy have also been observed 
[19]. In this case one would have to calculate a deterministic measure corresponding 
to an  infinite sequence of signs (generated from a finite sequence by some recursion 
relation) which characterises the geometry of the model. 
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